Choose your screen resolution: Auto adjust 800x600 1024x768


Numerele intregi negative, aparitie si motivatia necesitatii lor
Scris de administrator   
Luni, 08 Ianuarie 2018 17:09

NUMERELE ÎNTREGI NEGATIVE, APARIȚIE ȘI MOTIVAȚIA NECESITĂȚII LOR

Profesor: Vasilache Paraschiva

Școala Gimnazială „ Șt. O. Iosif ” Tecuci

Rezumat: Istoria matematicii ne fascinează, ne dezvăluie aspecte inedite legate de inceputurile acestei discipline fără de care nu putem trăi. Apariția numerelor negative mai târzie decât a celorlalte numere, naturale sau raționale, este motivată de dezvoltarea omenirii, dar și de unele calcule ce păreau imposibile. Oferind elevilor informații suplimentare referitoare la numerele negative la putem trezi interesul pentru studiul mai aprofundat al matematicii.

Cuvinte cheie: număr, reguli, semne, datorii.

Trecerea de la numerele naturale la fracții s-a făcut foarte devreme, documentele ce menționează despre calcule cu fracții datează din sec. XX-XVII î.e.n. (manuscrisul lui Ahmes din Egipt). Noțiunea de fracție a apărut încă din vremurile în care mijloacele de producție erau foarte primitive, în timp ce numerele negative corespund unor condiții economice mai evoluate.

La formarea noțiunii de număr negativ au concurat două elemente. Primul,care ar putea fi numit elementul concret, constă în folosirea numerelor negative pentru a caracteriza mărimile ce pot fi socotite în două sensuri(avere sau datorie,spre dreapta sau spre stânga etc.), iar în al doilea,care ar pute fi numit elementul operațional, constă în faptul că apăreau scăderi în care termenul al doilea este mai mare decât primul. Elementul al doilea a jucat rolul motor. La început nu au existat probleme cu date negative, numerele negative au apărut ca rezultate ale scăderii, ca soluții ale unor probleme, dar ele nu s-au impus definitiv decât în momentul în care li s-a putut da o interpretare concretă.

Ideea de număr negativ apare ,într-o anumită măsură la Diofante(sec. III e.n.).El vorbește de „numere de scăzut” (negative), spre deosebire de „numerele de adunat” (pozitive); el dă chiar regula de înmulțire a două numere negative,dar la el numărul negativ nu apare independent, ci ca scăzător.Totodată el consideră diferența a- b, în care a > b, iar când, în rezolvarea unei ecuații, ajunge la o soluție pe care noi o numim negativă, el consideră că ecuația este imposibilă.

Numerele negative apar sub formă clară pentru prima oară la algebriștii din India.Ei au o notație specială (un punct deasupra cifrei respective) și termeni speciali pentru numerele pozitive și negative, care în limba obișnuită înseamnă, respectiv avere și datorie.Ei folosesc aceste numere și pentru a exprima lungimile unor segmente de pe aceeași dreaptă,socotite într-un sens sau altul.

Și arabii considerau soluțiile negative ca inacceptabile.Nici primii algebriști europeni nu-l depășesc pe Diofante. Cei mai mulți au atitudine șovăielnică. În cursul dezvoltării algebrei se înregistrează oscilații. Astfel, Leonardo din Pisa(sec.XIII), într-o problemă de asociație care duce la o soluție negativă, consideră problema imposibilă,dar adaugă că problema ar avea sens dacă partea unuia dintre asociați ar fi o datorie. Unii algebriști din secolul al XVI-lea, ca de exemplu Cardano, admit și soluții negative și le numesc numere fictive, spre deosebire de numerele adevărate, dar marele algebrist Fr.Vieta, sec. XVII nu admite soluții negative. Până și Descartes, sec. XVII, folosește numai ordonate negative, nu și abscise negative- deci numerele negative ca rezultate, nu ca date, iar literele pot lua, în general numai valori pozitive.

Fuzionarea dintre cele două elemente,cel operațional și cel concret, și rolul predominant al primului își găsesc expresia în faptul că semnele „+” și „ ‒” care erau semne de operații, apar nemijlocit și ca semne pentru numerele pozitive, respectiv negative. Invenția numerelor negative merge mână în mână cu găsirea regulilor după care se operează cu ele.

Despre felul în care s-a ajuns la aceste reguli se știe prea puțin. În cărțile din timpul Renașterii, ele apar în diferite formulări,uneori în versuri,dar totdeauna sub formă dogmatică, ca niște constatări sau imperative, fără nici o motivare. Nicăieri nu se arată clar cum s-a ajuns la ele. Regulile înseși erau considerate ca date, ele fiind moștenite de la arabi. Totuși se poate afirma că la găsirea acestor reguli au contribuit trei factori: analogia cu numerele pozitive, folosirea simbolurilor algebrice și practica.

Aceste reguli nu au fost acceptate cu ușurință. Au apărut unele contradicții și reticențe.Ceea ce a făcut ca acest ansamblu de reguli să se impună a fost practica. El a fost acceptat pentru că dă rezultate care corespund unor fenomene și relații din realitate. Verificarea în practică a constituit singura bază solidă, liniștitoare pentru algebriștii mai scrupuloși. Atât greutățile de a lămuri lucrurile din punct de vedere teoretic, cât și rolul practicii sunt exprimate sub formă emoționantă de Clavius (1544) „Se pare că trebuie să renunțăm la motivarea acestei reguli privind înmulțirea numerelor cosice și a semnelor „ + ” și „‒”. Trebuie să atribuim neputinței omenești faptul că nu poate pricepe de ce este adevărată. Dar de justețea regulii înmulțirii nu trebuie să ne îndoim pentru că este confirmată de mai mult exemple”.

Ultimele cuvinte nu pot avea alt sens decât că regula este confimată de practică. După cum se vede, drumul de la „numerele de scăzut” ale lui Diofante până la ansamblul de reguli după care se operează cu numere întregi așa cum apar ele în manualele de astăzi n-a fost nici rectiliniu nici luminos.

Bibliografie:

Kolman E . „Istoria matematicii în antichitate”, Editura Științifică, 1963

Rus I.,Varna D., „Metodica predării matematicii”, E.D.P., 1983

Horia Banea, „Metodica predării matematicii”, Paralela 45, 1998

 

Revista cu ISSN

Legatura dintre matematica si practica

LEGĂTURA DINTRE MATEMATICĂ ŞI PRACTICĂ Profesor Ene Steluţa  Şcoala Miron Costin, Galaţi     Cei care afirmă că matematica este o abstracţiune fără legătură cu practica sunt în mod cert victimile unei neînţelegeri de termeni...

Read more

Metode - stimularea creativitatii

STRATEGII DIDACTICE MODERNE DE STIMULARE A CREATIVITÃŢII ELEVILOR ÎN CADRUL ORELOR DE LIMBA ŞI LITERATURA ROMÂNÃ   Institutor Anton Simona Marinela Şcoala cu clasele I-VIII nr.2 Vorniceni, Judetul Botosani     Având în vedere...

Read more

Saptamana Educatiei Globale Hrana pentru…

Saptamana Educatiei Globale Hrana pentru toti

Saptamana Educatiei Globale "Hrana pentru toti" Coordonator consilier educativ, profesor Lazar Mihaiela  

Read more

Metode si procedee interactive utilizate…

METODE ŞI PROCEDEE INTERACTIVE UTILIZATE ÎN PROCESUL INSTRUCTIV-EDUCATIV LA CICLUL PRIMAR   Pricope Delia Loredana, profesor învăţământul primar, Şcoala Gimnazială “Vasile Conta”, Iaşi     Metodele de învăţământ reprezintă căile de transformare în practică a...

Read more

Gheorghe Asachi si revolutia de la 1848

  GHEORGHE ASACHI ŞI REVOLUŢIA DE LA 1848 Mamalaucă Mariana, profesor Şcoala Gimnazială ,,George Tutoveanu” Bârlad Dezvoltarea unei țări se face prin efortul oamenilor, iar dintre aceștia se evidențiază cei care...

Read more

Dispozitii finale concurs pentru ocupare…

CAPITOLUL VI  Dispozitii finale      Art. 23. -    (1) Cheltuielile pentru organizarea si desfasurarea concursului pentru ocuparea posturilor didactice/catedrelor vacante/rezervate in unitatile de invatamant particular din invatamantul preuniversitar, precum si plata cadrelor...

Read more

Mecanisme de asigurare a calitatii la ni…

MECANISME DE ASIGURARE A CALITATII LA NIVELUL SCOLII   La nivelul fiecarei organizatii furnizoare de educatie din Romania se infiinteaza Comisia pentru evaluarea si asigurarea calitatii.  Organizatia furnizoare de educatie elaboreaza si adopta...

Read more

Joc si joaca in literatura romana

JOC ŞI JOACĂ ÎN LITERATURA ROMÂNĂ Prof. Octavian Horia MINDA Şcoala cu clasele I-VIII, Sînandrei, Judeţul Timiş Jocul şi joaca sunt teme foarte des întâlnite în viaţa...

Read more