Choose your screen resolution: Auto adjust 800x600 1024x768


Numerele intregi negative, aparitie si motivatia necesitatii lor
Scris de administrator   
Luni, 08 Ianuarie 2018 17:09

NUMERELE ÎNTREGI NEGATIVE, APARIȚIE ȘI MOTIVAȚIA NECESITĂȚII LOR

Profesor: Vasilache Paraschiva

Școala Gimnazială „ Șt. O. Iosif ” Tecuci

Rezumat: Istoria matematicii ne fascinează, ne dezvăluie aspecte inedite legate de inceputurile acestei discipline fără de care nu putem trăi. Apariția numerelor negative mai târzie decât a celorlalte numere, naturale sau raționale, este motivată de dezvoltarea omenirii, dar și de unele calcule ce păreau imposibile. Oferind elevilor informații suplimentare referitoare la numerele negative la putem trezi interesul pentru studiul mai aprofundat al matematicii.

Cuvinte cheie: număr, reguli, semne, datorii.

Trecerea de la numerele naturale la fracții s-a făcut foarte devreme, documentele ce menționează despre calcule cu fracții datează din sec. XX-XVII î.e.n. (manuscrisul lui Ahmes din Egipt). Noțiunea de fracție a apărut încă din vremurile în care mijloacele de producție erau foarte primitive, în timp ce numerele negative corespund unor condiții economice mai evoluate.

La formarea noțiunii de număr negativ au concurat două elemente. Primul,care ar putea fi numit elementul concret, constă în folosirea numerelor negative pentru a caracteriza mărimile ce pot fi socotite în două sensuri(avere sau datorie,spre dreapta sau spre stânga etc.), iar în al doilea,care ar pute fi numit elementul operațional, constă în faptul că apăreau scăderi în care termenul al doilea este mai mare decât primul. Elementul al doilea a jucat rolul motor. La început nu au existat probleme cu date negative, numerele negative au apărut ca rezultate ale scăderii, ca soluții ale unor probleme, dar ele nu s-au impus definitiv decât în momentul în care li s-a putut da o interpretare concretă.

Ideea de număr negativ apare ,într-o anumită măsură la Diofante(sec. III e.n.).El vorbește de „numere de scăzut” (negative), spre deosebire de „numerele de adunat” (pozitive); el dă chiar regula de înmulțire a două numere negative,dar la el numărul negativ nu apare independent, ci ca scăzător.Totodată el consideră diferența a- b, în care a > b, iar când, în rezolvarea unei ecuații, ajunge la o soluție pe care noi o numim negativă, el consideră că ecuația este imposibilă.

Numerele negative apar sub formă clară pentru prima oară la algebriștii din India.Ei au o notație specială (un punct deasupra cifrei respective) și termeni speciali pentru numerele pozitive și negative, care în limba obișnuită înseamnă, respectiv avere și datorie.Ei folosesc aceste numere și pentru a exprima lungimile unor segmente de pe aceeași dreaptă,socotite într-un sens sau altul.

Și arabii considerau soluțiile negative ca inacceptabile.Nici primii algebriști europeni nu-l depășesc pe Diofante. Cei mai mulți au atitudine șovăielnică. În cursul dezvoltării algebrei se înregistrează oscilații. Astfel, Leonardo din Pisa(sec.XIII), într-o problemă de asociație care duce la o soluție negativă, consideră problema imposibilă,dar adaugă că problema ar avea sens dacă partea unuia dintre asociați ar fi o datorie. Unii algebriști din secolul al XVI-lea, ca de exemplu Cardano, admit și soluții negative și le numesc numere fictive, spre deosebire de numerele adevărate, dar marele algebrist Fr.Vieta, sec. XVII nu admite soluții negative. Până și Descartes, sec. XVII, folosește numai ordonate negative, nu și abscise negative- deci numerele negative ca rezultate, nu ca date, iar literele pot lua, în general numai valori pozitive.

Fuzionarea dintre cele două elemente,cel operațional și cel concret, și rolul predominant al primului își găsesc expresia în faptul că semnele „+” și „ ‒” care erau semne de operații, apar nemijlocit și ca semne pentru numerele pozitive, respectiv negative. Invenția numerelor negative merge mână în mână cu găsirea regulilor după care se operează cu ele.

Despre felul în care s-a ajuns la aceste reguli se știe prea puțin. În cărțile din timpul Renașterii, ele apar în diferite formulări,uneori în versuri,dar totdeauna sub formă dogmatică, ca niște constatări sau imperative, fără nici o motivare. Nicăieri nu se arată clar cum s-a ajuns la ele. Regulile înseși erau considerate ca date, ele fiind moștenite de la arabi. Totuși se poate afirma că la găsirea acestor reguli au contribuit trei factori: analogia cu numerele pozitive, folosirea simbolurilor algebrice și practica.

Aceste reguli nu au fost acceptate cu ușurință. Au apărut unele contradicții și reticențe.Ceea ce a făcut ca acest ansamblu de reguli să se impună a fost practica. El a fost acceptat pentru că dă rezultate care corespund unor fenomene și relații din realitate. Verificarea în practică a constituit singura bază solidă, liniștitoare pentru algebriștii mai scrupuloși. Atât greutățile de a lămuri lucrurile din punct de vedere teoretic, cât și rolul practicii sunt exprimate sub formă emoționantă de Clavius (1544) „Se pare că trebuie să renunțăm la motivarea acestei reguli privind înmulțirea numerelor cosice și a semnelor „ + ” și „‒”. Trebuie să atribuim neputinței omenești faptul că nu poate pricepe de ce este adevărată. Dar de justețea regulii înmulțirii nu trebuie să ne îndoim pentru că este confirmată de mai mult exemple”.

Ultimele cuvinte nu pot avea alt sens decât că regula este confimată de practică. După cum se vede, drumul de la „numerele de scăzut” ale lui Diofante până la ansamblul de reguli după care se operează cu numere întregi așa cum apar ele în manualele de astăzi n-a fost nici rectiliniu nici luminos.

Bibliografie:

Kolman E . „Istoria matematicii în antichitate”, Editura Științifică, 1963

Rus I.,Varna D., „Metodica predării matematicii”, E.D.P., 1983

Horia Banea, „Metodica predării matematicii”, Paralela 45, 1998

 

Adaugă comentariu


Codul de securitate
Actualizează

Revista cu ISSN

Interventia psihopedagogica pe fond inte…

INTERVENȚIA PSIHOPEDAGOGICĂ PE FOND INTELECTUAL PRECAR Prof.educator Mureșan- Chira Gabriel CRDEII Cluj- Napoca Rezumat: Inteligența mediază organizarea formelor superioare de echilibru ale structurii...

Read more

Evaluarea Nationala 2014 la clasele a II…

Evaluarea Nationala 2014 la clasele a II-a, a IV-a si a VI-a - modele de test Au aparut postate pe site-ul Ministerului Educatiei Nationale modelele de test pentru Evaluarea Nationala...

Read more

Principii de formare interculturala a ca…

PRINCIPII DE FORMARE INTERCULTURALĂ A CADRELOR DIDACTICE                                                          Prof. Popescu Mihaela, Colegiul Tehnic Mătăsari, Gorj      Societatea actuală impune formarea cadrelor didactice şi din perspectivă interculturală. În acest sens, Camilieri distinge o...

Read more

Consideratii asupra evolutiei scris citi…

CONSIDERAŢII ASUPRA EVOLUŢIEI SCRIS – CITITULUI   Prof. Iulia-Emanuela Pop,             Profesor educator la CSEI Şimleu Silvaniei, structura Speranţa, Zalău   Actul grafic Scrisul este considerat ca fiind o formă de exprimare a limbajului, ce implică...

Read more

Programul Sa stii mai multe sa fii mai b…

Programul „Să ştii mai multe, să fii mai bun!" 2013   Programul „Să ştii mai multe, să fii mai bun!” apare ca şi ANEXA la ordinul MECTS nr. 5635/31.08.2012 privind structura anului...

Read more

Spune Nu drogurilor - tipuri de droguri …

Spune Nu drogurilor - tipuri de droguri - metadona

10. Metadona   Metadona este un opioid produs pe cale sintetică, cu efect similar morfinei, elaborată în anul 1942 de fabrica de vopsele Hoechster. A fost patentată în anul 1953 şi...

Read more

Activitatea catedrei/comisiei metodice

ACTIVITATEA CATEDREI/COMISIEI METODICE   Art.40. Catedrele/comisiile metodice se constituie din minimum patru membri, care predau aceeaşi disciplină de studiu. În situaţiile în care disciplina educaţie fizică şi sport este predată de mai...

Read more

Rolul scolii in formarea morala a elevil…

ROLUL ŞCOLII ÎN FORMAREA MORALĂ A ELEVILOR   Prof. înv. primar Vaida Ioana-Alina Şcoala Gimnazială Fodora, com. Gâlgău   Inima copilului este un pământ ce nu poate fi lăsat necultivat. Familia, școala și alte...

Read more