Choose your screen resolution: Auto adjust 800x600 1024x768


Categorii
Scris de administrator   
Joi, 08 Iunie 2017 16:08

CATEGORII

Prof. Badea Brigitte,

Colegiul Tehnic Ion Mincu, Timişoara

Rezumat

Structurile algebrice constituie o ramură fascinantă a algebrei, cu aplicaţii extrem de interesante. Elevilor din clasele a XII-a le sunt pezentate câteva structuri algebrice de bază prin care ei pot întrezări frumuseţea acestei părţi a matematicii. Pentru profesorii interesaţi de extinderea în acest domeniu a cunoştinţelor elevilor pe care îi îndrumă voi prezenta în articol noţiunea de categorie, construită cu ajutorul morfismelor studiate în liceu. Această structură algebrică va fi exemplificată prin două categorii tipice, categoria grupurilor abeliene Ab şi categoria R-modulelor Mod( R).

I. Noţiunea de categorie

Se numeşte categorie o noţiune matematică C dată prin:

- o clasă Ob C ale cărei elemente se numesc obiecte;

- pentru fiecare cuplu de obiecte (A,B), o mulţime notată HomC(A,B) numită mulţimea morfismelor de la A la B;

- pentru fiecare tre iobiecte A, B, C o aplicaţie:

mABC: HomC(A,B) HomC(B,C) ®HomC(A,C), aplicaţii care definesc compunerea morfismelor; vom nota: mABC((f,g)) = gf.

Aceste date sunt supuse următoarelor condiţii:

(Cat.1) Dacă (A,B) şi (C,D) sun tdouă perechi distincte de obiecte din C, atunci

HomC(A,B) ∩ HomC(C,D) = Æ.

(Cat.2) Compunerea morfismelor este asociativă, adică:

dacă f HomC(A,B), g HomC(B,C), h HomC(C,D) atunci h(gf) = (hg)f .

(Cat.3) Pentru fiecare obiect A există un morfism 1A HomC(A, A) astfelîncât f HomC(A, ×) şi g HomC(× ,A) să avem: f1A = f şi 1A g = g .

Observaţie: Pentru fiecare obiect A, morfismul1A numit morfism unitate sau morfism identic, este unic.

Fie D o categorie. O categorie Cse numeşte subcategorie a lui D dacă sunt îndeplinite condiţiile:

1) Ob C ÍObD ;

A, B Ob C, HomC(A,B) HomD(A,B) ;

2) Compunerea înCeste indusă de compunerea din D;

3) A Ob C, 1A HomC (A,A).

Prin duala unei categorii vom înţelege categoria C° dată prin:

a) ObC° = ObC ;

b) HomC° (A,B) = HomC(B,A);

c) pentru A, B, C Ob C°, f HomC° (A,B), g HomC° (B,C), m ((f,g)) = mCBA((g,f)).

Principiul dualităţii: Orice noţiune sau enunţ relativ la obiectele şi morfismele unei categoriiCadmite, prin transcriere în categoriaC°, o noţiune sau un enunţ dual.

Observaţie: Practic, dualizarea se obţine prin inversarea săgeţilor ce reprezintă morfismeleluiC.

II. Exemple

1) Categoria grupurilor abeliene Ab

Această categorie este unul din exemplele tipice de categorii, în mod evident condiţiile fiind îndeplinite pentru grupurile abeliene dotate cu morfismele obişnuite şi cu compunerea morfismelor. Exemplul este accesibil inclusive elevilor de liceu în cazul extinderii cunoştinţelor referitoare la structurile algebrice.

2) Categoria R-modulelor Mod(R)

Fie R un inel comutativ arbitrar, cu elemental unitate 1 ≠ 0.

Printr-un modul peste R sauR-modul înţelegem un grup aditiv abelianX împreună cu o aplicaţie

μ: R X → X care satisface următoarele patru axiome:

(M1) μ ( α+β, x) = μ (α, x) + μ ( β, x), α, β R, x X

(M2)μ( α, x+y) = μ(α, x) + μ (α, y), α R , x, y X

(M3)μ [α,μ ( β, x)]= μ (α β, x), α, β R , x X

(M4) μ (1, x) = x , x X .

Aplicaţia μ este numită înmulţirea cu scalar ia modulului X. Această operaţie externă este notată, de regulă, multiplicativ:μ (α, x) = αx.

Cu această notaţie axiomele (M1) – (M4) se scriu:

(M ) (α+β)x = αx + βx , α, β R, x X

(M ) α(x+y) = αx + αy , α R , x, y X

(M ) α(β x) = (α β)x α, β R , x X

(M ) 1x = x, x X .

Fie X şi Y două R-module. O aplicaţie f: X → Y se numeşte morfism de R-module dacă îndeplineşte condiţiile:

(1) f(x+y) = f(x) + f(y), x, y X

(2) f(αx) = αf(x) , α R, x X.

Cu alte cuvinte f este morfism de R-module dacăşi numai dacă este morfism de grupuri şi păstrează înmulţirea cu scalari.

R-modulele dotate cu morfismele de R-module şi cu compunerea uzuală a morfismelor constituie de asemenea un exemplu tipic de categorie.

Bibliografie:

[1] Dragomir A., Dragomir P. – “Structuri algebrice”, Edit. Facla,Timişoara, 1981;

[2] Mitchell B. – Theory of Categories”, Academic Press, New York, 1965;

[3] SzeTsen Hu Introduction to Homological Algebra”, Holdan-Day Inc., 1968.

 

Adaugă comentariu


Codul de securitate
Actualizează

Revista cu ISSN

Structura anului scolar 2012-2013 prin o…

Structura anului şcolar 2012-2013 prin ordin 3794 din 2012     MINISTERUL EDUCAŢIEI, CERCETĂRII, TINERETULUI ŞI SPORTULUI ORDIN Nr. 3.794/2012 privind structura anului şcolar 2012–2013 M.Of. nr. 296 din 5.5.2012   În temeiul art. 94 alin. (2)...

Read more

Precizari evaluarea elevilor la proba de…

Precizari privind evaluarea elevilor la proba anticipata a examenului de bacalaureat sustinut de elevii sectiilor bilingve francofone in vederea obtinerii mentiunii speciale "sectie bilingva francofona" pe diploma de bacalaureat   Afla Precizarea...

Read more

Platforma de prezentare a ofertelor de e…

Platformă de prezentare    a ofertelor de educaţie non-formală     pentru săptămâna „Şcoala altfel”      Ministerul Educaţiei, Cercetrării, Tineretului şi Sportului a deschis o platfomă online de înregistrare a ofertelor organizaţiilor non-guvernamentale din domeniul educaţiei şi...

Read more

Problema libertatii la Dostoievski

STUDIU ASUPRA PROBLEMEI LIBERTĂȚII LA DOSTOIEVSKI   Andone Crenguța - profesor Colegiul Tehnic de Transporturi Brașov   Problema libertății apare în opera lui Dostoievski în “Frații Karamazov” și presupune posibilitatea personajului de a...

Read more

Calendarul Evaluarilor Nationale la clas…

Calendarul Evaluarilor Nationale la clasele a II-a, a IV-a si a VI-a in 2014   Vezi Ordinul ministrului educatiei nationale privind aprobarea Metodologiei de organizare si desfasurare a Evaluarilor Nationale in anul...

Read more

Metodologie gradatie de merit pentru pro…

Metodologie gradatie de merit pentru profesori 2017 Ministrul Educatiei Nationale si Cercetarii Stiintifice, Mircea Dumitru, a aprobat, prin ordin, metodologia si criteriile privind acordarea gradatiei de merit personalului didactic din...

Read more

Dreptul la nefericire

DREPTUL LA NEFERICIRE DUMITRU TALVESCU Liliana Terziu a editat 6 volume de poezie până acum și este la primul volum de eseuri. Acest volum de...

Read more